Site map: an outline view including all pages

Crucial physical and informational technologies
 .  FAQ
 .  An overview of nanotechnology and molecular manufacturing
 .   .  The term “nanotechnology” has two very different meanings.
 .   .  Molecular manufacturing will use nanomachines to build large products with atomic precision
 .   .  Molecular manufacturing will be able to make a wide range of superior products, many with unprecedented abilities
 .   .  Molecular manufacturing can be clean, efficient, and inexpensive
 .   .  Molecular manufacturing does not require self-replicating machines
 .   .  Existing knowledge in science and engineering provides the basis for our current understanding of molecular manufacturing
 .   .  Research worldwide is advancing along multiple paths toward molecular manufacturing
 .   .  Mechanosynthetic operations on molecules can transfer single atoms
 .   .  Physical scaling laws enable small machines to be highly productive
 .   .  Molecular mills can perform repetitive assembly steps using simple, efficient mechanisms
 .   .  Convergent assembly can quickly build large products from nanoscale parts
 .   .  Complete molecular manufacturing systems will have many subsystems, designed to meet many constraints
 .   .  Images of the desktop nanofactory are available for use
 .  Molecular machine animations
 .  The mechanical behavior of molecular systems
 .   .  Most large molecules made by conventional synthesis are floppy
 .   .  Large molecules made by mechanosynthesis can be stiff
 .   .  Dynamical simulation illustrates the behavior of a floppy molecule
 .   .  Dynamical simulation illustrates the behavior of a stiff molecule
 .   .  Dynamical simulation shows a fast-moving ring
 .   .  Stiffly supported sliding atoms have a smooth interaction potential
 .   .  Softly supported sliding atoms can undergo abrupt transitions in energy
 .   .  Molecular bearings
 .   .   .  Bearings play a crucial role in many sorts of machinery
 .   .   .  A shaft in a sleeve can form a rotary bearing
 .   .   .  Symmetric molecular bearings can exhibit low energy barriers that are insensitive to details of the potential energy function
 .   .   .  Bearings can be stable despite attractive interactions between their surfaces
 .   .   .  Phonon drag in sleeve bearings can be orders of magnitude smaller than viscous drag in liquids
 .   .   .  Sleeve bearings have been designed and modeled in atomic detail
 .   .   .  PDB files can describe molecular structures in atomic detail
 .  Building molecular nanosystems
 .   .  Science and engineering, despite their close relationship, differ fundamentally
 .   .  Brownian assembly is a powerful technique with substantial difficulties and limitations
 .   .  Molecular machine systems are a strategic objective in developing advanced molecular nanosystems
 .   .  Selected publications on the engineering of atomically precise structures from biomolecular materials
 .   .   .  (1981 Drexler) Protein engineering as a path to advanced nanotechnologies
 .   .   .  (1983 Pabo) Viewing protein design as “inverse folding”
 .   .   .  (1988 Regan & DeGrado) A first success in de novo protein design
 .   .   .  (1989 Noren et al.) New building blocks for protein engineering
 .   .   .  (1990 Hecht et al.) De novo design of a native-like protein
 .   .   .  (1994 Drexler) Implementation strategies for molecular nanomachines: protein engineering and AFM-based molecular manipulation
 .   .   .  (1997 Dahiyat & Mayo) De novo protein design using fully automated sequence selection
 .   .   .  (1997 DeGrado) Commentary: “A banner year for de novo protein design”
 .   .   .  (1998 Benner et al.) New building blocks for nucleic acid engineering
 .   .   .  (1998 Seeman) Review of DNA nanotechnology
 .   .   .  (2002 Seeman) Building nanostructures by emulating biology
 .   .   .  (2003 Alberti & Mergny) A DNA-based nanomachine
 .   .   .  (2003 Kuhlman) First design of a protein with a novel backbone topology
 .   .   .  (2003 Seeman) Structural DNA nanotechnology for nanoelectronics, nanorobotics, and smart materials
 .   .   .  (2004 Shih et al.) Design and synthesis of a rigid DNA octahedron
 .  Molecular modeling and error sensitivity
 .   .  Quantum chemistry can describe motions, including changes in bonding
 .   .  Standard molecular mechanics can describe only motions that leave bonding unchanged
 .   .  Some potential energy functions accurately describe the geometries of important classes of structures
 .   .  Many molecular phenomena are sensitive to energy differences on the order of kT
 .   .  Many molecular phenomena are insensitive to energy differences on the order of kT
 .   .  The yields of reactions with large driving energies are insensitive to small variations in driving energy
 .   .  Mechanically stiff mechanosynthetic systems can reliably block many unwanted reactions
 .   .  The geometries of stiff molecular structures are relatively insensitive to details of the potential energy function
 .   .  Experimental data can correct modeling errors
 .  Nanosystems: Molecular Machinery, Manufacturing, and Computation
 .   .  Nanosystems: what it’s about, how it's used, and where to read more
 .   .  Comments on Nanosystems
 .  Computation as a foundation of technology and society
 .   .  Selected publications on secure and social computing
 .   .   .  (2006 Miller) Cooperation that works: concurrency and secure computing
 .   .   .  (2003 Miller & Shapiro) Rethinking the foundations of secure computing
 .   .   .  (2003 Miller & Steigler) Computational contract infrastructure for emerging market economies
 .   .   .  (1991 Drexler) Hypertext publishing and the evolution of knowledge
 .   .   .  (1988 Miller & Drexler) A computational perspective on comparative ecology
 .   .   .  (1988 Drexler & Miller) Mechanisms for market-based management of computational resources
 .   .   .  (1988 Miller & Drexler) Market mechanisms as a framework for open computational systems
 .  What’s new?
 .  Navigating and using this site
 .   .  Site map: an outline view including all pages
 .   .  How this site is organized and linked
 .   .  Search this and related sites
 .   .  Using material from this site
 .  Donations
 .  K. Eric Drexler, PhD
 .   .  Select recent and upcoming lectures
 .   .  Publications and Patents (partial listing)
 .   .  Education
 .   .  University courses using works by Eric Drexler
 .   .  Biography

How is this site map generated, and how does it help locate a page in its context?

Next  How this site is organized and linked